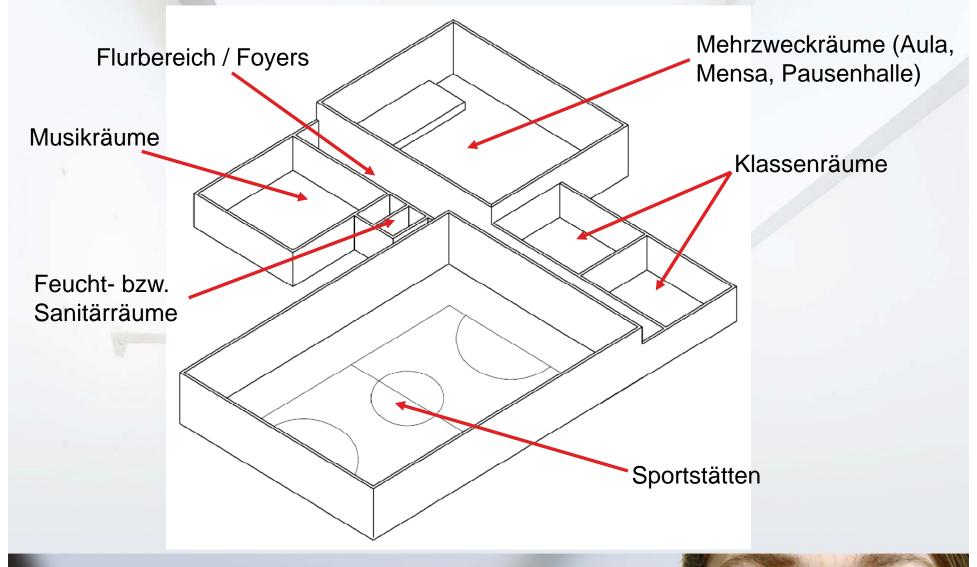


Schulraumakustik -Balanceakt zwischen Kosten, Gestaltung und guter Akustik

Fahrplan:


- > Raumkategorien in Schulen und deren akustische Anforderungen
- > Klassenraum mit verschiedenen Deckenausführungen
- Verschiedene Konstruktion und deren Bewertung
- > Fazit


Schulraumakustik - Raumkategorien

Schulraumakustik -Anforderungen an die Akustik

Räume der Gruppe B

"Hörsamkeit über geringe Entfernungen"

- Lesesäle und Leihstellen in Bibliotheken
- Werkräume (z.B. Lehrwerkstatt)
- Foyers, Ausstellungsräume, Treppenhäuser

Unterricht

- Unterrichtsraum (außer für Musik)
- Musikunterrichtsraum mit audiovisueller Darb.
- Seminarraum, Interaktionsraum
- Hörsaal

Sport 1

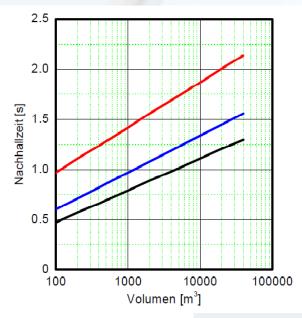
• Sport-und Schwimmhallen ohne Publikum einzügiger Betrieb

Sport 2

• Sport-und Schwimmhallen ohne Publikum mehrzügiger Betrieb

Schulraumakustik -Anforderungen an die Akustik

Die jeweils anzustrebende Soll-Nachhallzeit T_{soll} kann mit den unten angegebenen Formeln für die jeweilige Nutzung exakt berechnet werden:

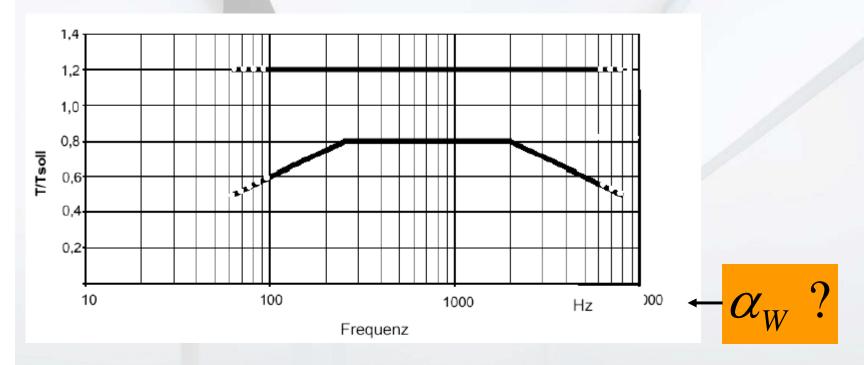

Musik:
$$T_{\text{soll}} = \left(0.45 \lg \frac{V}{m^3} + 0.07\right) \text{s}$$

Sprache:
$$T_{\text{soll}} = \left(0.37 \lg \frac{V}{m^3} - 0.14\right) \text{s}$$

Unterricht:
$$T_{\text{soll}} = \left(0.32 \lg \frac{V}{m^3} - 0.17\right) \text{s}$$

Sport 1:
$$T_{\text{soll}} = \left(1,27 \lg \frac{V}{m^3} - 2,49\right) \text{s}$$

Sport 2:
$$T_{soll} = \left(0.95 \lg \frac{V}{m^3} - 1.74\right) s$$



für 2 000 m³ $\leq V \leq 8$ 500 m³.

Schulraumakustik -Anforderungen an die Akustik

Wenn der zu beurteilende Raum für **Sprache** genutzt werden soll, dann muss die frequenzabhängige Nachhallzeit im folgenden Toleranzbereich (± 20 %) liegen:

Anzustrebender Bereich der Nachhallzeit (V = 1000 m³) für **Sprache** in <u>Abhängigkeit von der Frequenz</u>

Schulraumakustik - Einflussfaktoren auf die Akustik

Welche Faktoren beeinflussen die Raumakustik?

- 1. Lage des Raumes im Gebäude
- 2. Schalldämmung der Umfassungsbauteile
- 3. Geräuschentwicklung haustechnischer Anlagen
- 4. Raumform- und Raumgröße (Primärstruktur)
- 5. Oberflächenbeschaffenheit der Raumbegrenzungsflächen (Sekundärstruktur)
- 6. Einrichtungsgegenstände (Sekundärstruktur)
- 7. Dimensionierung und räumliche Verteilung schallabsorbierender und reflektierender Flächen

Schulraumakustik -**Balanceakt**

Bewertungskriterien:

> Raumakustik (1)

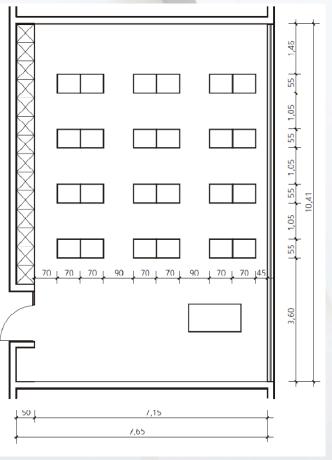
> Kosten

Montagezeit

> optische Anmutung

Bewertungspunkte:

- okay


© 8 - neutral

- mäßig

🙁 🙁 - schlecht

Grundfläche:

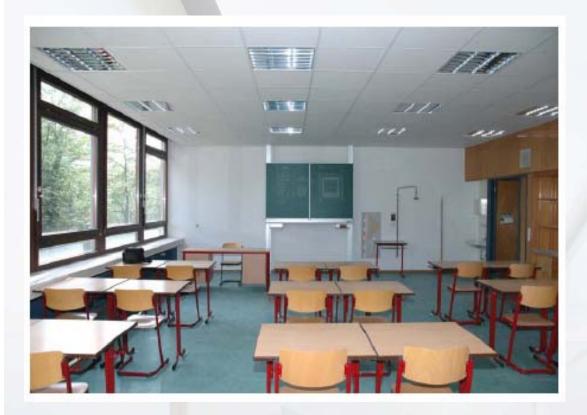
 $A \approx 71 \text{m}^2$

Raumvolumen: $V \approx 220 \text{ m}^3$

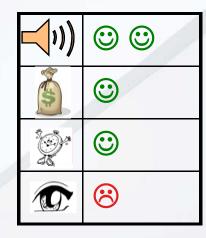
Fußboden: PVC-Belag

Decke: glatte GK-Decke

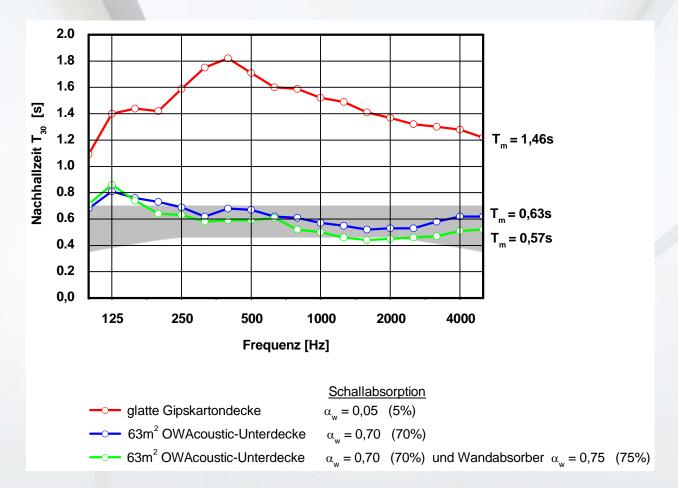
unter Betonrippendecke


Wände: Klinker-Sichtmauerwerk,

Massivbauweise mit Tapete


Fenster: Holzrahmenfenster

Türe: Holztüre

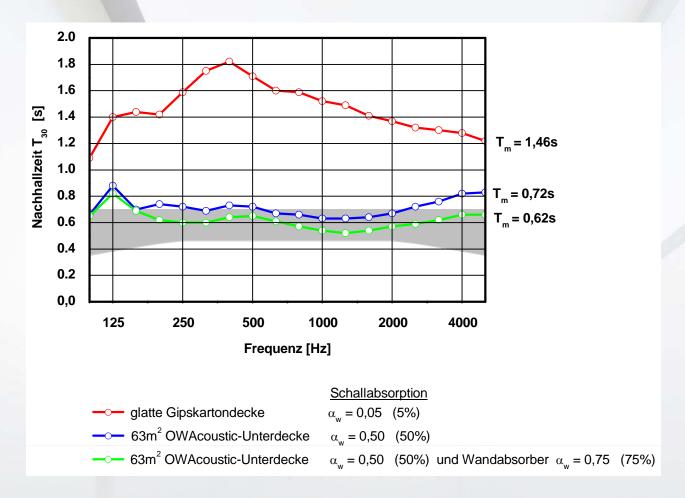


sichtbare Konstruktion

vollflächig gut absorbierende Mineralfaserdecke ohne und mit Wandabsorber

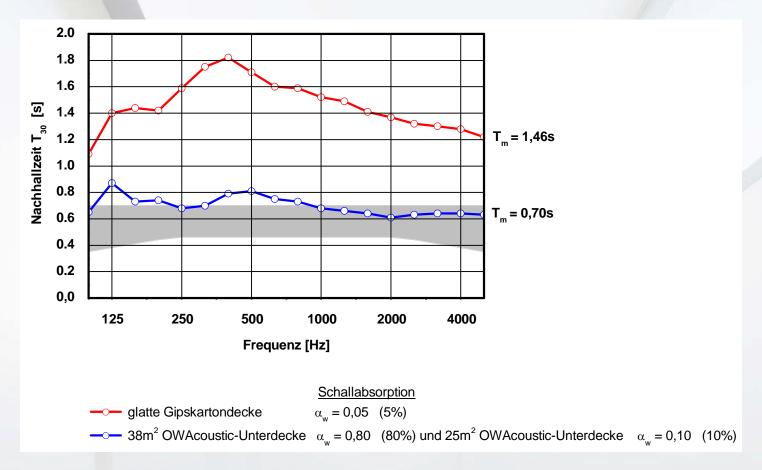


Ziel-Nachhallzeit gemäß DIN 18041: $T_{soll} = 0.58 \text{ s } (\pm 20 \text{ }\%) \text{ für Unterricht}$



vollflächig mittelstark absorbierende Mineralfaserdecke ohne / mit Wandabsorber

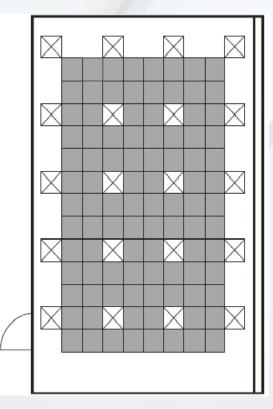
Ziel-Nachhallzeit gemäß DIN 18041: $T_{soll} = 0.58 \text{ s} (\pm 20 \%)$ für Unterricht



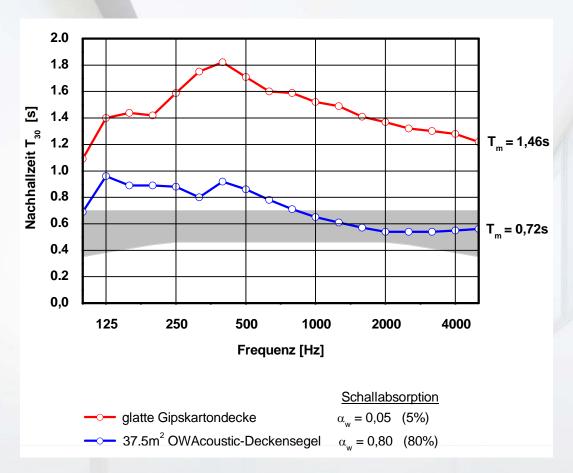
umlaufendes schallabsorbierendes Fries (ca. 43 m²)

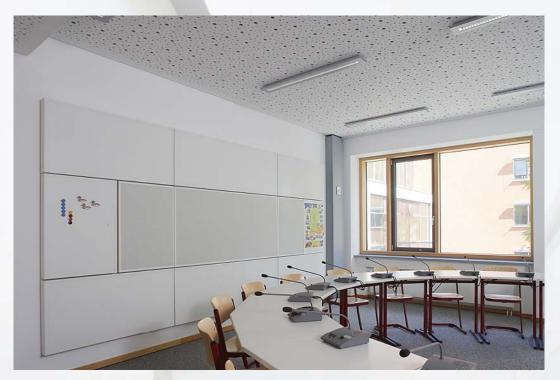
und

schallreflektierender Mittelteil (ca. 28 m²)

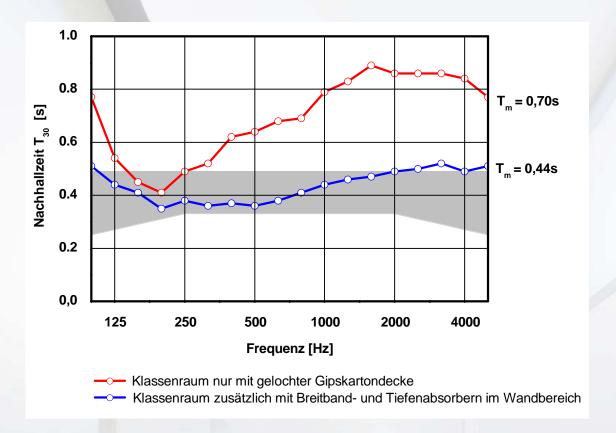


Ziel-Nachhallzeit gemäß DIN 18041: $T_{soll} = 0.58 \text{ s} (\pm 20 \%)$ für Unterricht




schallabsorbierendes Deckensegel (ca. 40 m²)

Ziel-Nachhallzeit gemäß DIN 18041: $T_{soll} = 0.58 \text{ s } (\pm 20 \text{ }\%) \text{ für Unterricht}$


Klassenraum für schwerhörige und hörgeschädigte Kinder

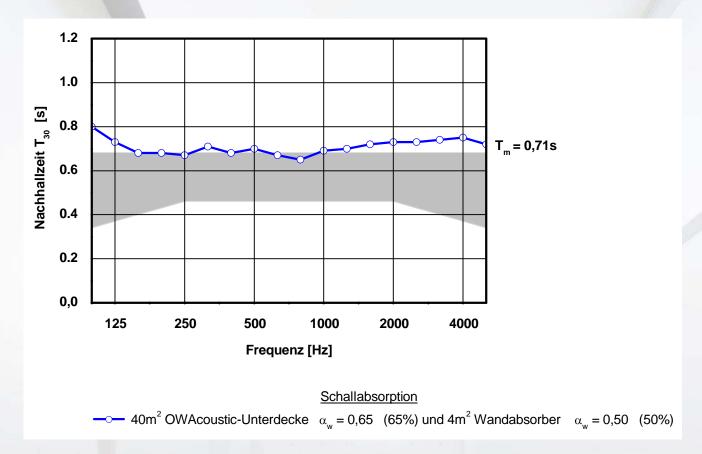
Wandabsorber

vollflächig gelochte GK-Decke plus zusätzlich Breitband- und Tiefenabsorbern im Wandbereich

Ziel-Nachhallzeit gemäß DIN 18041:

T_{soll} = 0,41 s (± 20 %) für Unterricht, unter Berücksichtigung der hörgeschädigten Personen

Halbverdeckte Konstruktion

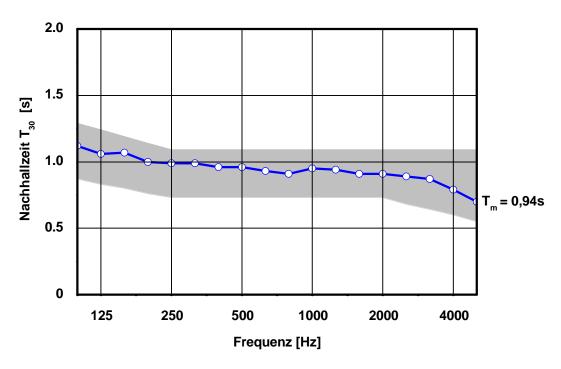


Schallabsorbierendes Deckensegel (40 m²) und

umlaufend glatte Gipskartondecke (30 m²)

Ziel-Nachhallzeit gemäß DIN 18041: $T_{soll} = 0.57 \text{ s } (\pm 20 \text{ }\%)$ für Unterricht

verdecktes System



mittelstark absorbierende Akustikdecken (grau)

und

Tiefenabsorber im Wandbereich

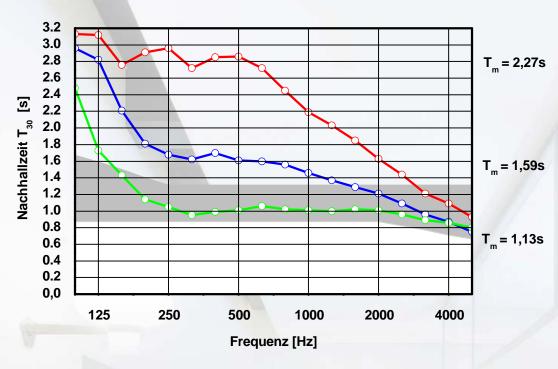
Nachhallzeitverlauf bei Anforderung für Musik & Unterricht gemäß DIN 18041

Ziel-Nachhallzeit gemäß DIN 18041:

 $T_{soll} = 0.94$ s (± 20 %) für Mischnutzung Unterricht & Musik bei 315 m³

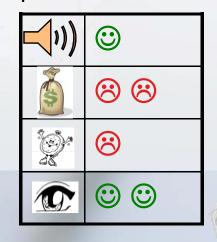
Schallabsorbierende Mineralwolleplatte zwischen den Betonunterzüge

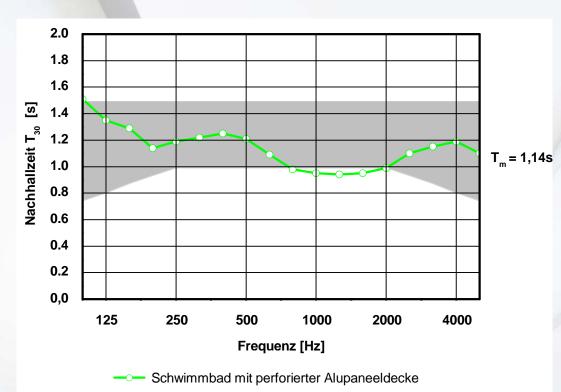
freigespannte Konstruktion



Deckensegel in Kombination
mit Breitbandabsorbern an der Wand

- Mehrzweckraum nur mit Akustikputz im Deckenbereich
- Mehrzweckraum zusätzlich mit 14 OWAcoustic-Breitbandabsorbern
- Mehrzweckraum mit ergänzenden Deckensegeln


Ziel-Nachhallzeit gemäß DIN 18041: T_{soll} = 1,24 s (± 20 %) für Sprache & Musik



Spezial - Konstruktion

Raumdaten:

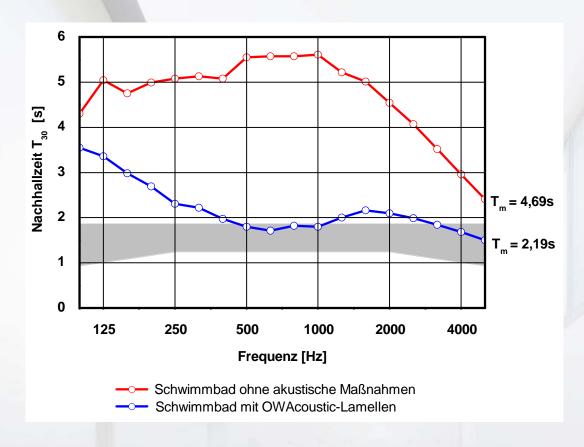
Grundfläche A ≈ 377 m²

Volumen $V \approx 860 \text{ m}^3$


Ziel-Nachhallzeit gemäß DIN 18041: $T_{soll} = 1,24 \text{ s } (\pm 20 \text{ %})$ für Sport

Schulraumakustik - Sportstätten

Lamellen - Konstruktion



Lamellen-Segel mit unterschiedlichen Höhen

Schulraumakustik - Sportstätten

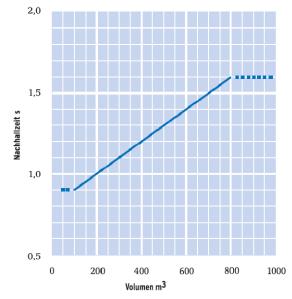
Raumdaten:

Grundfläche A ≈ 233 m²

Volumen $V \approx 1514 \text{ m}^3$

Ziel-Nachhallzeit gemäß DIN 18041: $T_{soll} = 1,55 \text{ s } (\pm 20 \text{ }\%) \text{ für Sport}$

Schulraumakustik - Flure, Treppenhäuser, Foyers



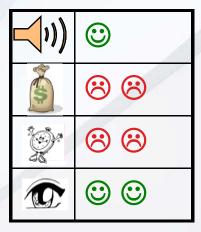
DIN 18041 – Räume der Gruppe B:

Raumart	Orientierungswerte für mit Schallabsorbern zu bekleidende freie Decken- und Wandflächen als Vielfaches der Raumgrundfläche bei Verwendung von Schallabsorbern mit einem $\alpha_{\rm w}$ (lichte Raumhöhe von i.M. 2,50 m)													
	1,00	0,95	0,90	0,85	0,80	0,75	0,70	0,65	0,60	0,55	0,50	0,45	0,40	0,35
Treppenhäuser Flure Foyers	0,20	0,20	0,20	0,20	0,30	0,30	0,30	0,30	0,30	0,40	0,40	0,40	0,50	0,60

Maßnahmenempfehlungen für Flure und Treppenhäuser gemäß Umweltbundesamt UBA "Leitfaden für Innenraumhygiene in Schulgebäuden"

$$T = \left(\frac{V}{1000} \text{ m}^3\right) + 0.80$$

Schulraumakustik -Flure, Treppenhäuser, Foyers



Schulraumakustik - Flure, Treppenhäuser, Foyers

fugenlose Konstruktion

Schulraumakustik - Fazit

- > Wenn nachträglich akustische Maßnahmen benötigt werden, ist Balanceakt schwierig zu realisieren!
- > Wenn im Planungszustand an die Akustik gedacht wird, dann ist der Balanceakt gut zu realisieren!
- "Quadratisch, praktisch, gut!"
- > Wertigkeit / Optik hat seinen Preis

Vielen Danke für Ihre Aufmerksamkeit!

www.OWA.de

